博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
(转) Deep Learning Resources
阅读量:7123 次
发布时间:2019-06-28

本文共 4225 字,大约阅读时间需要 14 分钟。

Videos

  1. Deep Learning and Neural Networks with Kevin Duh: 
  2. NY Course by Yann LeCun: , 
  3. NIPS 2015  by Yann LeCun and Yoshua Bengio ()(,)
  4. ICML 2013  by Yann Lecun ()
  5. Geoffery Hinton’s cousera course on 
  6. Stanford 231n : Convolutional Neural Networks for Visual Recognition (, , , , , , )
  7. Large Scale Visual Recognition Challenge , arxiv 
  8. GTC Deep Learning 
  9. Hugo Larochelle Neural Networks , 
  10. My youtube 
  11. Yaser Abu-Mostafa’s Learning from Data  (youtube )
  12. Stanford CS224d: Deep Learning for Natural Language Processing: , youtube , , 
  13. Neural Networks for Machine Perception: 
  14. Deep Learning for NLP (without magic): , , , , 
  15. Introduction to Deep Learning with Python: , , 
  16. Machine Learning course with emphasis on Deep Learning by Nando de Freitas (), course , torch 
  17. NIPS 2013 Deep Learning for Computer Vision Tutorial – Rob Fergus: , 
  18. Tensorflow 

Links

  1. NVidia’s Deep Learning 
  2. My flipboard 

AMIs, Docker images & Install Howtos

  1. Stanford 231n  AMI:  image is cs231n_caffe_torch7_keras_lasagne_v2, AMI ID: ami-125b2c72, Caffe, Torch7, Theano, Keras and Lasagne are pre-installed. Python bindings of caffe are available. It has CUDA 7.5 and CuDNN v3.
  2. AMI for AWS EC2 (g2.2xlarge): ubuntu14.04-mkl-cuda-dl (ami-03e67874) in Ireland Region: ,  Installed stuffs: Intel MKL, CUDA 7.0, cuDNN v2, theano, pylearn2, CXXNET, Caffe, cuda-convnet2, OverFeat, nnForge, Graphlab Create (GPU), etc.
  3.  for installing the 
  4. Public EC2 AMI with Torch and Caffe deep learning toolkits (ami-027a4e6a): 
  5. Install Theano on AWS (ami-b141a2f5 with CUDA 7): 
  6. Running Caffe on AWS Instance via Docker: , , 
  7. CVPR 2015 ITorch Tutorial (ami-b36981d8): , , 
  8. Torch/iTorch/Ubuntu 14.04 Docker : docker pull kaixhin/torch
  9. Torch/iTorch/CUDA 7/Ubuntu 14.04 Docker : docker pull kaixhin/cuda-torch
  10. AMI containing Caffe, Python, Cuda 7, CuDNN, and all dependencies. Its id is ami-763a311e (disk min 8G,system is 4.6G), 
  11. My  at GitHub

Examples and Tutorials

  1. IPython Caffe 
  2. IPython , arxiv , rcnn , selective 
  3.  with Torch 7
  4. Deep Learning  with Theano/Python, , 
  5. Torch , 
  6.  with Caffe
  7.  an Object Classifier in Torch-7 on multiple GPUs over 
  8. Stanford Deep Learning Matlab based  (, )
  9. DIY Deep Learning for Vision: A Hands on tutorial with Caffe ()
  10. Tutorial on Deep Learning for Vision CVPR 2014: 
  11. Pylearn2 : , 
  12. Pylearn2 , 
  13. So you wanna try deep learning?  from SnippyHollow
  14. Object Detection  from SnippyHollow
  15. Filter Visualization  from SnippyHollow
  16.  on CNN and DBN, and 
  17. CVPR 2015 Caffe 
  18.  on Amazon EC2 GPU with Python and nolearn
  19.  build and run your first deep learning network (, behind paywall)
  20. Tensorflow 
  21. Illia Polosukhin’s Getting Started with Tensorflow – , , 
  22.  at NIPS 2015
  23. CNTK: , , , 
  24. CNTK  and 

People

  1. Geoffery Hinton: , Reddit  (11/10/2014)
  2. Yann LeCun: , NYU Research , Reddit  (5/15/2014)
  3. Yoshua Bengio: , Reddit  (2/27/2014)
  4. Clement Fabaret:  (), , code 
  5. Andrej Karpathy: , , , 
  6. Michael I Jordan: , Reddit  (9/10/2014)
  7. Andrew Ng: , Reddit  (4/15/2015)
  8. Jurden Schmidhuber: , Reddit  (3/4/2015)
  9. Nando de Freitas: , , Reddit  (12/26/2015)

Datasets

  1. MNIST (), 
  2. Kaggle 
  3.  Vision Benchmark Suite
  4. Ford Campus Vision and Lidar 
  5. PCL Lidar 
  6. Pylearn2 

Frameworks and Libraries

  1. Caffe: , , 
  2. Torch: , , , 
  3. Theano: , 
  4. Tensorflow: , , , 
  5. CNTK: , , 
  6. CuDNN: 
  7. PaddlePaddle: , , , 
  8. fbcunn: 
  9. pylearn2: , 
  10. cuda-convnet2: , , 
  11. nnForge: 
  12. Deep Learning software 
  13. Torch vs. Theano 
  14. Overfeat: , , , , 
  15. Keras: , , 
  16. Deeplearning4j: , 
  17. Lasagne: , 

Topics

  1. Scene Understanding (CVPR 2013, Lecun) (),  ()
  2. Overfeat: Integrated Recognition, Localization and Detection using Convolutional Networks ()
  3. Parsing Natural Scenes and Natural Language with Recursive Neural Networks: , ICML 2011 

Reddit

  1. Machine Learning Reddit 
  2. Computer Vision Reddit 
  3. Reddit: Neural Networks: , 
  4. Reddit: Deep Learning: , 

Books

  1. Learning Deep Architectures for AI, Bengio ()
  2. Neural Nets and Deep Learning (, )
  3. Deep Learning, Bengio, Goodfellow, Courville ()
  4. Neural Nets and Learning Machines, Haykin, 2008 ()

Papers

  1. ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012 ()
  2. Why does unsupervised pre-training help deep learning? ()
  3. Hinton06 – Autoencoders ()
  4. Deep Learning using Linear Support Vector machines ()

Companies

  1. Kaggle: 
  2. Microsoft 

Conferences

  1. PAMITC 
Posted in 

 

转载地址:http://icoel.baihongyu.com/

你可能感兴趣的文章
【mySQL】left join、right join和join的区别
查看>>
线上CPU100%?看看这篇是怎么排查的!
查看>>
自己开发的在线视频下载工具,基于Java多线程
查看>>
提高云服务器安全等级的七个措施
查看>>
使用JavaScript ES6的新特性计算Fibonacci(非波拉契数列)
查看>>
JS面向对象的程序设计之继承的实现 - 原型链的注意点
查看>>
JustDoIt:立刻开始你的编程之旅
查看>>
Shell 脚本编写
查看>>
纹理集打包和动画转换工具Texture Merge的使用教程
查看>>
【响应式布局】initial containing block、viewport以及相关尺寸
查看>>
ajax在同一页面中同控制器不同方法中调用数据并异步刷新的实例
查看>>
代码性能调优“三十六”策
查看>>
面向云数据库,超低延迟文件系统PolarFS诞生了
查看>>
systemverilog中Configuration的用法详解
查看>>
(...)这三个点在JavaScript中意味着什么?
查看>>
Android中的设计模式之策略模式
查看>>
深入解析丨母婴App如何迅速收割2W新用户?
查看>>
Java 8之stream进阶
查看>>
redis学习一, 在mac系统下安装
查看>>
Matrix 矩阵css3
查看>>